

1

WebLogic Server 11gR1 Java Messaging Service (JMS) Labs

Introduction

The following hands-on labs are intended to provide an introduction to some of
the main features of WebLogic JMS in WLS 11gR1. The labs are intended to
give you practice in configuring and using WebLogic JMS, through the Admin
Console and online WLST scripts, with a mixture of webapp and standalone
client applications.

There are 7 labs in all. These cover:

JMS Basics – Configuring Queues and Topics (Lab 1)
JMS Basics – Working with Queues and Topics (Lab 2)
Working with JMS Queues – Active Message Expiration (Lab 3)
Configuring Store-and-Forward (SAF) between WLS Domains (Lab 4)
Configuring Unit-of-Order (UOO) (Lab 5)
Configuring Unit-of-Work (UOW) (Lab 6)
Configuring Messaging Bridge between WLS Domains (Lab 7)

You will also find a number of labs covering JMS-related topics in the WebLogic
Server 11gR1 Cluster Labs: in particular, these provide examples of how to use
Distributed JMS Destinations and JMS Auto Service Migration in WLS 11gR1.

The lab materials are included in a zipped archive file. You can unzip this and
store it anywhere on your local machine, this folder will be referred below as
%LAB_HOME%. In it, you will find a number of folders:

Apps – deployable client/test applications
Clients – standalone JMS consumer/producer classes
Scripts – WLST scripts for configuring labs 1, 2, 3 and 6
Templates – Template jar files for creating WLS domains for the labs
Shortcuts – A number of useful MS-Windows shortcuts for starting servers etc.

Apart from these materials, the only software you will to install is WebLogic
Server 11gR1. You can install this wherever you like on your local machine (but
note that the shortcuts provided assume a WLS installation directory of c:\wls103
– you may need to modify these for your local environment).

2

JMS Lab – Setup

You will need to create two simple WebLogic Server domains to work with for this
lab. Both domains have one admin server and one managed server:

Domain1 (dizzyworld):

Admin Server (listen port: 7001)
one Managed Server (name: mainServer, listen port: 7003).
Template: WLS103JMSLabDomain1.jar

Domain2 (dizzyworld2):
Admin Server (listen port: 5001)
one Managed Server (name: remoteServer, listen port: 5003).
Template: WLS103JMSLabDomain2.jar

To create the dizzyworld domain, use the WebLogic Server Configuration Wizard
(Start -> All Programs -> Oracle WebLogic -> Tools -> Configuration Wizard).
Follow these steps:

 Create a new WebLogic domain

 Base this domain on an existing template, browse to the
%LAB_HOME%\Templates directory and select
WLS103JMSLabDomain1.jar

 Keep default domain name and location

 Accept default Admin login/password (“weblogic/weblogic”)

 Accept default Development mode and SUN SDK

 Accept default environment and services settings

 Create

Repeat the procedure to create the dizzyworld2 domain. The only difference is
the template name – base this domain on WLS103JMSLabDomain2.jar
template.

Modify the file paths for the shortcuts provided inside
%LAB_HOME%/Shortcuts , these shortcuts will be used through all the
labs.

3

Lab 1 – Creating and Managing JMS Resources

For this lab, you will use the dizzyworld domain you created in the Lab Setup.

Start the admin server and managed server: shortcuts have been provided in the
JMSLab/Shortcuts folder (dizzyworld Admin Server.lnk and dizzyworld
mainServer.lnk). Start the admin console (http://localhost:7001/console) and
login as weblogic/weblogic. The following steps describe how to create JMS
system resources:

1. Create a new JMS Server

 In the Domain Structure window select Messaging->Services->JMS
Servers , click New

 Set msgJMSServer as a Name, keep persistent store to none, click
Next

 Select mainServer as a target and click Finish

2. Create a new JMS Module

 In the Domain Structure window select Messaging->Services->JMS
Modules, click New

 Set msgJMSSystemResource as Name, click Next

 Set mainServer as a target, click Next

 Click Finish

3. Create a new JMS SubDeployment for the JMS Module

 In the Domain Structure window select Messaging->Services->JMS
Modules, click msgJMSSystemResource

 Go to the SubDeployments tab, click New

 Set msgSubDeployment as a Name, click Next

 Target it to the msgJMSServer, click Finish

4. Create a Queue

 In the Domain Structure window select Messaging->Services->JMS
Modules, click msgJMSSystemResource

 Click New button, select Queue, click Next

 Set queue name: msgQueue, JNDI name: PracticeQueue, click
Next

 Select msgSubDeployment subdeployment and click Finish

5. Create a Topic

 In the Domain Structure window select Messaging->Services->JMS
Modules, click msgJMSSystemResource

 Click New button, select Topic, click Next

 Set topic name: msgTopic, JNDI name: PracticeTopic, click Next

http://localhost:7001/console

4

 Select msgSubDeployment subdeployment and click Finish

You could also create all these resources using WLST script, look at
%LAB_HOME%\Scripts\Lab1JMSResources.py for more details.

From the admin console‟s Deployments page, deploy the test application
messaging.war from the %LAB_HOME%\Apps folder to the mainServer. If you
prefer, you can open a command shell (run setDomainEnv.cmd from the
dizzyworld domain bin directory to set your environment) and type:
java weblogic.Deployer -username weblogic -password weblogic -targets
mainServer -deploy <path>/messaging.war

Open the test application in a browser (http://localhost:7003/messaging). Try
sending a few messages to the queue.

Go to the Administration Console, Navigate to Services->Messaging -> JMS
Modules -> msgJMSSystemResource -> msgQueue and click on the Monitoring
tab. Check the box and click on “Show Messages” to view the messages on the
queue.

http://localhost:7003/messaging

5

Lab2 – Working with Queues and Topics

To see the difference between queues and topics, compare what happens when
you run QueueSend/QueueReceive and TopicSend/TopicReceive (you will find
these JMS client classes in the %LAB_HOME%/Clients/Lab2 folder. Open a
command shell, set your environment (you can use "WebLogic Shell.lnk"
shurtcut), cd to %LAB_HOME%/Clients/Lab2 and type:
> java QueueSend t3://localhost:7003

Send a few messages:

Now open a second window and type:
> java QueueReceive t3://localhost:7003

You will see the messages:

6

You can continue sending messages (finish with a „quit‟ message) and you will
see them delivered to the QueueReceive client application.

Now try exactly the same steps, but this time use the TopicSend/TopicRecieve
client classes (in the %LAB_HOME%/Clients/Lab2 folder). Open a command
shell, set your environment (you can use "WebLogic Shell.lnk" shurtcut), cd to
%LAB_HOME%/Clients/Lab2 and type:
> java TopicSend t3://localhost:7003

Publish a few messages to the topic, so:

Now open a second window and type:
> java TopicReceive t3://localhost:7003

This time, you will see that the topic consumer is ready to receive messages but
the messages sent to the topic before the consumer subscribed are not received:

Now try publishing a few more messages to the topic and now you will see them
arrive at the consumer (TopicReceive):

7

Open a third command shell, set your environment and start another instance of
the consumer (TopicReceive):
> java TopicReceive t3://localhost:7003

Send a few more messages from the publisher (TopicSend) and you will see that
the messages are received by both consumers. This is one of the differences
between the Publish-Subscribe (topic) and Point-to-Point (queue) messaging
models. To see this, send a „quit‟ message to close the producer and consumer
clients, then try the same thing but this time using QueueSend for the producer
and two instances of QueueReceive as the consumer application. This time, you
should see that each message goes only to one consumer (by default, they will
be distributed round-robin).

Pause/Resume Message Production/Consumption
Start up a Topic producer and consumer(s) as above, then navigate to the admin
console page for the msgTopic JMS Topic (dizzyWorld -> Services ->Messaging-
>JMS Modules -> msgJMSSystemResource -> msgTopic) and click on the
Control tab. Check the box to select msgTopic and then try pausing message
production/consumption and watch what happens with your message producer
and consumer clients.

8

Resume production/consumption for the msgTopic Topic

Using Persistent Message Stores and Durable Subscribers
Create a new persistent file store in which to persist JMS messages. First,
create a new folder („stores‟) in the domain directory to hold the new message
store (%MIDDLEWARE_HOME%\user_projects\dizzyworld\stores).
In the Admin Console navigate to the dizzyworld -> Services -> Persistent Stores
page and create a file-based persistent store, with the following properties:
Name: myFileStore
Target: mainServer
Directory: <MIDDLEWARE_HOME>\user_projects\domains\dizzyworld\stores

 Configure msgJMSServer to use myFileStore as its persistent file store.
Navigate to dizzyworld -> Services ->Messaging-> JMS Servers ->
msgJMSServer in the admin console,

 go to the Configuration -> General tab and select myFileStore as the
Persistent Store from the drop-down list, click Save

Use persistent messaging for msgTopic and create durable subscribers: this will
allow us to publish messages to msgTopic and know that they will be received by
subscribers, even if the subscribers are not connected when the messages are
published (unlike in our earlier example). To achieve this, first we need to make
sure that messages we post to msgTopic are persisted by myJMSServer to the
persistent file store. We can do this by specifying DeliveryMode.PERSISTENT
as the delivery mode to use in our publisher client. In the
%LAB_HOME%/Clients/Lab2 folder you will find a version of the TopicSend
class, called PersisentTopicSend, which has been written to do this:

 public void send(String message) throws JMSException {
 msg.setText(message);
 tpublisher.publish(msg, DeliveryMode.PERSISTENT, 4, 0);
 }

Next, we need to create durable subscribers to the JMS topic and to do this, we
need to change our client code to call JMSSession.createDurableSubscriber()

9

and we also use a unique Client ID to identify both the client and the durable
subscription. In the %LAB_HOME%/Clients/Lab2 folder, you will find a version of
the TopicReceive class, called DurableSubscriber, which has been written in this
way:

 public void init(Context ctx, String topicName, String clientID)
 throws NamingException, JMSException
 {
 tconFactory = (TopicConnectionFactory)
 PortableRemoteObject.narrow(ctx.lookup(JMS_FACTORY),
 TopicConnectionFactory.class);
 tcon = tconFactory.createTopicConnection();
 tcon.setClientID(clientID);
 tsession = tcon.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 topic = (Topic)
 PortableRemoteObject.narrow(ctx.lookup(topicName),
 Topic.class);
 tsubscriber = tsession.createDurableSubscriber(topic, clientID);
 tsubscriber.setMessageListener(this);
 tcon.start();
 }

To see persistent JMS topics and durable subscribers in action, run a couple of
instances of the DurableSubscriber class in separate command shells, making
sure that each one has a unique subscriber ID, so:

> java DurableSubscriber t3://localhost:7003 Client1

> java DurableSubscriber t3://localhost:7003 Client2

Open another command shell and run the PersistentTopicSend class:

> java PersistentTopicSend t3://localhost:7003

Publish a few messages to the topic and, as before, you will see the messages
being received by the subscribers. However, now send a „quit‟ message to close
the two DurableSubscriber instances, then rerun the PersistentTopicSend class
and publish some more messages. With non-durable topics, the new messages
would never be delivered to subscribers which do not have an active connection
to the JMS Server; however, if you now restart one of the DurableSubscriber
instances (using the same syntax as before, with the same subscriber ID), you
should see that the earlier messages all received as soon as the subscriber client
connects to the JMS Server, so:

10

You can view and manage persistent messages that have been published to a
durable topic, but not yet consumed by a particular subscriber, using the Admin
Console. Navigate to the dizzyworld -> Services -> Messaging -> JMS Modules -
> msgJMSSystemResource -> msgTopic page, open the Monitoring -> Durable
Subscribers tab and you should see the two durable subscribers:

Notice that one of these subscribers is marked as (Active = false). Check the
box for that Subscription and the Show Messages button will be enabled. Click
on this and you will see the unconsumed messages for that durable subscriber:

11

You can click on any of the messages to view them, or use the GUI to delete,
move, import or export messages for this topic/subscriber.

12

Lab 3 – Configuring Active Message Expiration

For this lab, you will use the dizzyworld domain you created in the Lab Setup;
start both AdminServer and mainServer. The following steps describe how to
configure Active Message Expiration for a JMS Queue/Connection Factory:

1. Create connection factory.

 Navigate to JMS Modules -> msgJMSSystemResource and click on
the New button to create JMS Resources.

 Create a new ConnectionFactory (Name: msgConnectionFactory,
JNDI Name: msgConnectionFactory, leave the other settings
untouched), click Next

 Click “Advanced Targeting” button to add it to the
msgSubDeployment on msgJMSServer, click Finish.

 When you have created it, click on msgConnectionFactory, go to
the “Default Delivery” sub tab and set the Default Time-to-Live =
10000 (10secs), click Save.

2. Create a queue.

 Navigate to JMS Modules -> msgJMSSystemResource and click on
the New button to create JMS Resources.

 Create a Queue (Name: expireQueue, JNDI: expireQueue) and add
it to the msgSubDeployment on msgJMSServer.

3. Navigate to JMS Modules -> msgJMSSystemResource -> msgQueue and

click on the “Delivery Failure” tab. Set Expiration Policy to Redirect and
Error Destination to expireQueue.

4. Navigate to JMS Servers -> msgJMSServer -> Configuration -> General

and set the Expiration Scan Interval to 20 seconds.

You could also create all these resources using WLST script, look at
%LAB_HOME%\Scripts\ Lab3MsgExpiration.py for more details.

From the admin console‟s Deployments page, deploy the test application
shoppingcart.war from the %LAB_HOME\Apps folder to the mainServer. If you
prefer, you can open a command shell (run setDomainEnv.cmd from the
dizzyworld domain bin directory to set your environment) and type:
java weblogic.Deployer -username weblogic -password weblogic -targets
mainServer -deploy <path>/shoppingcart.war

Run the test client from a browser (http://localhost:7003/shoppingcart), click Go
shopping -> Add to Shopping Cart for a couple of items (will add messages to the
queue) and wait for about 10 seconds for the messages to expire and move from
msgQueue to expireQueue. In the admin console, navigate to JMS Modules ->

http://localhost:7003/shoppingcart

13

msgJMSSystemResources -> expireQueue and click on the Monitoring tab.
Check the box and click on “Show Messages” to view the expired messages.

14

Lab 4 – Store-and-Forward between WebLogic Server Domains

For this lab, you will configure a Store-and-Forward (SAF) Agent to forward JMS
messages to a remote queue in another WebLogic Server domain. You will use
dizzyworld as the source domain and dizzyworld2 domain as the target domain.
You should start the Admin Servers and managed servers for these domains
(you can use shortcuts from %LAB_HOME%\Shortcuts to start all 4 servers)

Configuring the SAF Source Domain (dizzyworld)

To save time, you may prefer to use the WLST script provided to configure the
SAF source domain. The script can be found in the %LAB_HOME%/Scripts
folder: it is called createSAFsource.py. Open a shell window, set your
environment by running setDomainEnv.cmd, go to %LAB_HOME%/Scripts and
type:

>java weblogic.WLST createSAFsource.py

For your reference, the following gives a step-by-step description of how to
accomplish this using the admin console:

1. Create a new JMS Server called sourceJMSServer and target it to
mainServer.

2. Create a new JMS Module called sourceJMSModule and target it to
mainServer.

3. Create a new Store-and-Forward Agent Agent (Name: sourceSAFAgent,
Persistent Store: none, Agent Type: Sending-Only) and target it to
mainServer managed server.

4. Navigate to JMS Modules -> sourceJMSModule, and create a new JMS
SubDeployment (Name: sourceSubDeployment, JNDI:
sourceSubDeployment) and target it to sourceJMSServer. This
subdeployment will be used for the connection factory
(sourceSAFConnectionFactory) that clients will use to connect to the
sourceJMSServer.

5. Create a second JMS SubDeployment (Name:
sourceSAFSubDeployment, JNDI: sourceSAFSubDeployment) and target
to sourceSAFAgent. This subdeployment will be used for the SAF
Imported Destinations resources.

6. Navigate to JMS Modules -> sourceJMSModule, and create a new
Connection Factory (Name: sourceConnectionFactory , JNDI:
sourceConnectionFactory), and use “Advanced Targeting” to add it to
sourceSubDeployment and target to sourceJMSServer.

7. Navigate to JMS Modules -> sourceJMSModule, and create a new
Remote SAF Context (Name: sourceRemoteSAFContext, URL:
t3://localhost:5003, User/Pwd: weblogic/weblogic)

15

8. Navigate to JMS Modules -> sourceJMSModule, and create a new SAF

Error Handling Resource (Name: sourceSAFErrorHandler, Policy: Log)
9. Navigate to JMS Modules -> sourceJMSModule, and create a new

Imported SAF Destinations (Name: sourceSAFImportedDestinations,
Remote SAF Context: sourceRemoteSAFContext, SAF Error Handling:
sourceSAFErrorHandler) and use Advanced Targeting to add it to the
sourceSAFSubDeployment and target to sourceSAFAgent.

10. Navigate to JMS Modules->sourceJMSModule-
>sourceSAFImportedDestinations and create a new remote Queue
(Name: remoteQueue, Remote JNDI: remote Queue).

Configuring the SAF Target Domain (dizzyworld2)
To save time, you may prefer to use the WLST script provided to configure the
SAF remote domain. The script can be found in the %LAB_HOME%/Scripts
folder: it is called createSAFremote.py. Open a shell window, set your
environment by running setDomainEnv.cmd and type:

>java weblogic.WLST createSAFremote.py

For your reference, the following gives a step-by-step description of how to
accomplish this using the admin console:

1. Logon to the Admin Server for dizzyworld2 (http://localhost:5001/console)
and create the remote JMS resources needed to test out the SAF
configuration as follows:

2. Create a new JMS Server called remoteJMSServer and target it to
remoteServer.

3. Create a new JMS Module called remoteJMSModule and target it to
remoteServer.

4. Navigate to JMS Modules -> remoteJMSModule, and create a new JMS
SubDeployment (Name: remoteSubDeployment, JNDI:
remoteSubDeployment) and target it to remoteJMSServer

5. Navigate to JMS Modules -> remoteJMSModule, and create a new
Connection Factory (Name: remoteConnectionFactory , JNDI:
remoteConnectionFactory), and use “Advanced Targeting” to add it to
remoteSubDeployment and target to remoteJMSServer.

6. Navigate to JMS Modules -> remoteJMSModule, and create a new Queue
(Name: remoteQueue , JNDI: remoteQueue), and use “Advanced
Targeting” to add it to remoteSubDeployment and target to
remoteJMSServer.

To test the SAF configuration, use the JMS test programs QueueSend.java and
QueueReceive.java. These can be found in the %LAB_HOME%\Clients\SAF

16

folder. Use the shortcut to open two shell windows (and set the environment by
running setDomainEnv.cmd), then in the first type:

> javac QueueSend.java
> java QueueSend t3://localhost:7003

This will allow you to enter messages (type „quit‟ to end the program) – these are
forwarded by the SAF Agent on mainServer to remoteQueue on remoteServer.
In the second window, type:

> javac QueueReceive.java
> java QueueReceive t3://localhost:5003

You should see the messages send to the dizzyWorld domain‟s queue are
received by the client listening dizzyWorld2 domain‟s queue.

17

Lab 5 – WebLogic JMS Unit-of-Order (UOO)

For this lab, you will use the dizzyworld domain you created in the Lab Setup;
start both AdminServer and mainServer.

Open 3 command shells (set your environment with setDomainEnv – use the
shortcuts provided). You will use these to run three JMS client applications, one
message producer and two consumers. Cd to %LAB_HOME%/Clients/UOO
folder, you will find the client .java and .class files. In the first window, type:

>java QueueSend t3://localhost:7003

This will allow you to post messages to the msgQueue (JNDI: PracticeQueue)
queue on mainServer‟s msgJMSServer JMS Server.

In the other two windows, type

>java QueueReceiveAuto t3://localhost:7003

You will see the messages being delivered to the two JMS clients: The client
program has AUTO_ACKNOWLEDGE set for the JMS Session, so the message
delivery is completed as soon as the onMessage() call completes. As a result,
messages are simply delivered round-robin to the two client programs and if you
send a sequence of messages (“hello 1”, hello 2”, “hello 3” …) you will see all the
even-numbered messages appear in one window and all the odd-numbered
messages appear in the second window.

Stop the client programs and take a look at QueueReceiveAck.java. This version
of the message consumer has CLIENT_ACKNOWLEDGE set, and you will be
prompted to acknowledge receipt of the message – until you enter “y”, the client
will not call msg.acknowledge() to acknowledge the message and get the next
message on the queue. Without UOO order set, the messages will be delivered
round-robin to the two clients, and the result is that messages can be consumed
out of order.

Run the client programs QueueSend and QueueReceiveAck in 3 windows:

Window1: >java QueueSend t3://localhost:7003
Window2: >java QueueReceiveAck t3://localhost:7003
Window3: >java QueueReceiveAck t3://localhost:7003

Try sending a numbered sequence of messages (such as “hello1”, “hello 2”,
“hello3” …) and acknowledge the messages in one client but not the other. You
will find that you can easily manage to simulate a scenario where the messages

18

are actually received out of sequence. In many use cases, this is not acceptable:
the solution is unit-of-order functionality:

Stop the client programs and re-configure the msgConnectionFactory object on
mainServer to use UOO by navigating in the admin console to JMS Modules ->
msgJMSSystemResource -> msgConnectionFactory and selecting the “Default
Delivery” tab. Set Default Unit of Order for Producers to “User-generated”, with
User-generated Unit-of-Order Name = “uoo-test”. You will need to restart
msgJMSSystemResource: go to View Changes and Restarts, click Restart
Checklist, check the item and click Restart button.

Re-run the QueueSend and QueueReceiveAck clients as before. Now you will
see that while one client is waiting to acknowledge a message, no messages can
be consumed by the other client – the messages are always consumed in the
same order as they were sent. Only when there are no unconsumed messages,
will the JMS Server deliver messages to the other client, and so on.

19

Lab 6 – WebLogic JMS Unit-of-Work (UOW)

For this lab, you will use the dizzyworld domain you created in the Lab Setup;
start both AdminServer and mainServer.

In this lab, you will experiment with WebLogic Server‟s JMS Unit-of-Work (UOW)
feature. This enables message producers to send multiple messages that need
to be processed together, as part of a logical group. Unlike Unit-of-Order, where
messages are received independently but in strict sequential order, Unit-of-Work
addresses scenarios where a number of distinct JMS messages must be handled
as a single unit by the consumer.

We will use the same JMS queue and connection factory that we used for the
previous example. Note that Unit-of-Order and Unit-of-Work should not be used
together, so we must reconfigure msgConnectionFactory not to use UOO.
Navigate to JMS Modules->msgJMSSystemResource->msgConnectionFactory
and select the Default Delivery tab. Set „Default Unit-of-Order for Producer‟ to
None. You will need to restart msgJMSSystemResource JMS Module to make
sure that this change is effective.

To configure UOW on msgQueue (JNDI: PracticeQueue), open the Admin
Console and navigate to Services -> Messaging -> JMS Modules ->
msgJMSSystemResource -> msgQueue, click on „Advanced‟ and set Unit-of-
Work (UOW) Message Handling Policy to Single Message Delivery.

To try out JMS Unit-of-Order, open two command shells (set the environment
with setDomainEnv.cmd) and go to the %LAB_HOME%/Clients/UOW folder,
where you will find sample JMS consumer and producer client classes: these are
called QueueSendUOW and QueueReceiveUOW. They allow you to send and
receive messages grouped by UOW, from the command line:

>java QueueSendUOW t3://localhost:7003
>java QueueReceiveUOW t3://localhost:7003

Enter a number of messages in the QueueSend window and notice that nothing
appears in the QueueReceive window until you send a „quit‟ message, which
completes the transaction and sends the final message for this UOW. At this
point, all the messages are delivered together to the consumer QueueReceive
program. Take a look at the client classes and note how the QueueSend class
sets the JMS_BEA_UnitOFWork, JMS_BEA_UnitOfWorkSequenceNumber and
JMS_BEA_IsUnitOfWorkEnd properties on the messages, how the UOW ID is
derived from a UUID (Unique User ID) to ensure uniqueness and how all the
messages are sent within the scope of a single transaction to avoid having
incomplete UOW messages sent to the JMS Server. In the QueueReceive class,
note how a single message of type ObjectMessage holds an Array of messages

20

that all share the same UOW. Extracts from the sample client classes are given
below for reference:

JMS Producer (QueueSendUOW.java)

 public void send(String message, String strUOW, int SeqNo, boolean isLast)
 throws JMSException {
 msg.setText(message);
 msg.setStringProperty("JMS_BEA_UnitOfWork", strUOW);
 msg.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumber", SeqNo);
 msg.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd", isLast);
 qsender.send(msg, DeliveryMode.PERSISTENT, 7, 0);
 }

 private static void readAndSend(QueueSendUOW qs)
 throws IOException, JMSException
 {
 BufferedReader msgStream = new BufferedReader(new InputStreamReader(System.in));
 String line=null;
 UUID UOW = null;
 boolean quitNow = false;
 int seqNumber = 1;

 UOW = UUID.randomUUID();
 while (! quitNow) {
 System.out.print("Enter message (\"quit\" to quit): \n");
 line = msgStream.readLine();
 if (line != null && line.trim().length() != 0) {
 quitNow = line.equalsIgnoreCase("quit");
 if (! quitNow) {
 qs.send(line, String.valueOf(UOW), seqNumber, false);
 } else {
 qs.send(line, String.valueOf(UOW), seqNumber, true);
 }
 System.out.println("JMS Message Sent: " + line + "\n");
 seqNumber += 1;
 }
 }
 }

JMS UOW Consumer (QueueReceiveUOW.java)

 public void onMessage(Message msg)
 {
 try {
 if (msg instanceof ObjectMessage) {
 ArrayList msgList = (ArrayList)(((ObjectMessage)msg).getObject());
 int numMsgs = msgList.size();
 System.out.println("Received [" + numMsgs + "] Messages");
 System.out.println("UOW id: " +
 (((TextMessage)msgList.get(0)).getStringProperty("JMS_BEA_UnitOfWork")));
 for (int i = 0; i < numMsgs; i++) {
 System.out.println("Message[" + i + "] " + ((TextMessage)msgList.get(i)).getText());

21

 }
 System.out.println();
 }
 } catch (JMSException jmse) {
 System.err.println("An exception occurred: "+jmse.getMessage());
 }
 }

22

Lab 7 – Configuring a Messaging Bridge

For this lab, you will configure a Messaging Bridge between the dizzyworld and
dizzyworld2 domains. You will use dizzyworld as the source bridge destination
and dizzyworld2 as the target bridge destination. You should start the Admin
Servers and managed servers for these domains, using the shortcuts in the
%LAB_HOME%/Shortcuts folder.

In most cases where you need to exchange JMS messages between WebLogic
Server domains, you will use the WebLogic JMS Store-and-Forward capabilities
we worked with in Lab 3. However, when you are working with other application
servers or JMS providers, or when exchanging messages with older WebLogic
Server versions, you may need to use the WebLogic JMS Messaging Bridge.

The WebLogic JMS Messaging Bridge will provide fully-transactional message
delivery, provided that the target bridge destination is capable of supporting an
XA-enabled JMS connection. Although the target queue and connection factory
already exist in the target (dizzyworld2) domain, the connection factory needs to
be made XA-enabled. You can do this using the admin console by connecting to
the dizzyworld2 admin server (http://localhost:5001/console) and navigating to
Services->Messaging->JMS Modules->remoteJMSModule-
>remoteConnectionFactory; select the „Transactions‟ tab and check „XA
Connection Factory Enabled‟, then Save.

If you wish to use the WLST script provided to configure the Messaging Bridge.
(JMSLab/Scripts/createMessageBridge.py), you will first need to deploy an XA-
compliant Resource Adapter, which the WebLogic JMS Messaging Bridge will
use to connect to the target system. To do so, open a shell window, set your
environment by running
%MIDDLEWARE_HOME%\user_projects\domains\dizzyworld\bin
setDomainEnv.cmd and type:

> java weblogic.Deployer -username weblogic -password weblogic -targets
AdminServer,mainServer -deploy
%MIDDLEWARE_HOME%/wlserver_10.3/server/lib/jms-xa-adp

Cd to %LAB_HOME%\Scripts and run

>java weblogic.WLST createMessageBridge.py

Open Admin Console for dizzyWorld domain and examine the Messaging Bridge
created by WLST script:

http://localhost:5001/console

23

You can use the client classes provided in the
%LAB_HOME%/Clients/MessageBridge folder to send and receive test
messages. Try sending a few messages using msgQueue and
msgConnectionFactory in the msgJMSSystemResource JMS Module and you
should see them appear on the dizzyworld2 remoteServer‟s remoteQueue. To
try this out, open a couple of command shells, set your environment and type:

>java QueueSend t3://localhost:7003
>java QueueReceive t3://localhost:5003

For your reference, the following gives a step-by-step description of how to
configure the WebLogic JMS Messaging Bridge using the admin console:

Open the Admin Console (http://localhost:7001/console) for the dizzyworld
source domain. Note the Messaging Bridge configuration below is all done on
the source (dizzyworld) domain:

1. Navigate to msgJMSSystemResource->msgConnectionFactory and select
the Transactions tab. Check the XA Connection Factory Enabled box.
Now select the Security tab and check the Attach JMSXUserId box. This
is required as the Messaging Bridge uses XA transactions to send
messages to the target system.

2. Navigate to Services->Messaging->Bridges->JMS Bridge Destinations

and configure the source JMS Bridge Destination on the dizzyworld
mainServer with the following properties:

Name: dwJMSBridgeDestination
Adapter JNDI Name: eis.jms.WLSConnectionFActoryJNDIXA
Connection URL: t3://localhost:7003
Connection Factory JNDI Name: msgConnectionFactory
Destination JNDI Name: PracticeQueue

http://localhost:7001/console

24

[Click OK and then select the newly-created dwJMSBridgeDestination]
Destination Type: Queue
User Name: weblogic
Password: weblogic

3. Navigate to Services->Messaging->Bridges->JMS Bridge Destinations

and configure the target JMS Bridge Destination on the dizzyworld2
remoteServer with the following properties

Name: dw2JMSBridgeDestination
Adapter JNDI Name: eis.jms.WLSConnectionFActoryJNDIXA
Connection URL: t3://localhost:5003
Connection Factory JNDI Name: remoteConnectionFactory
Destination JNDI Name: remoteQueue
[Click OK and then select the newly-created dwJMSBridgeDestination]
Destination Type: Queue
User Name: weblogic
Password: weblogic

4. Navigate to Services->Messaging->Bridges and configure a Messaging

Bridge between the dizzyworld and dizzyworld2 domains:

Name: dwBridge
Select the “Started” checkbox.
Source Bridge Destination: dwJMSBridgeDestination
Target Bridge Destination: dw2JMSBridgeDestination
Quality of Service: Exactly-once
Target: mainServer

You will need to restart JMS Server for these configuration changes to take
effect.

